
ISSN:0974-7230

The International Open Access
Journal of Systems Biology and Applied
Computer Science

Editor-in-Chief

Simon Lin, PhD
Northwestern University Biomedical Informatics Center, USA

Executive Editors

Sriram Neelamegham, PhD
New York State Center for Excellence in Bioinformatics and
Life Sciences, USA

Ying Tan, PhD
The State Key Laboratory of Machine Perception, Peking
University, China

Nicolas Turenne
INRA-MIG, Domaine de Vilvert, France

This article was originally published in a journal by OMICS
Publishing Group, and the attached copy is provided by OMICS

Publishing Group for the author’s benefit and for the benefit of
the author’s institution, for commercial/research/educational use
including without limitation use in instruction at your institution,
sending it to specific colleagues that you know, and providing a
copy to your institution’s administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,
or posting on open internet sites, your personal or institution’s
website or repository, are requested to cite properly.

Available online at: OMICS Publishing Group (www.omicsonline.com)

Digital Object Identifier: http://dx.doi.org/10.4172/jcsb.1000099

Volume 6(2): 043-047 (2013) - 043
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Research Article Open Access

Headleand and Teahan, J Comput Sci Syst Biol 2013, 6:2
http://dx.doi.org/10.4172/jcsb.1000099

Research Article Open Access

Computer Science

Systems Biology

Introduction
Self-programming agents promise to play a significant role in

the future of AI with systems designed that can adapt to a changing
environment. Various algorithms have been designed to enable
systems to achieve this goal of iteratively creating or improving
candidate programs. While there are many proposed algorithms,
an interesting subset is the systems that take direct inspiration from
biology, evolutionary algorithms being an obvious example. These
machine-learning techniques apply simple rules but have the capacity
to generate potentially complex behaviours.

Another example of simple rules within a natural system is the way
birds flock. Without a central controller or directed intelligence, the
creatures are able to swarm and navigate towards a common goal. This
flexible, decentralised, self-organising behaviour has been applied to
various computer algorithms including Craig Reynolds boids [1]. It
also serves as the inspiration for Particle Swarm Optimisation [2].

Particle Swarm Optimisation (PSO) is a computational method
that optimises solutions to a problem iteratively moving candidates
(particles) around the problem search space. The movements of the
particles are directly influenced by the position of their current personal
best and the best solutions found at positions discovered by other
particles. These movements (the position and velocity of the particle)
are updated iteratively as new solutions are found by the swarm. The
assumption is made that the population of particles (the swarm) will
cohere towards an optimum solution.

This paper examines a new approach to automatic program
generation through application of the Swarm paradigm. It proposes
additional rules that can be applied to improve search based automated
programming algorithms. A secondary aim is to show that biology
can continue to serve as an inspiration in field of AI and/or improve
existing algorithms.

Automatic Programming
Automatic programming is a collection of methods for generating

programs without the need for human intervention. In the following
section, we will briefly explore a subset of this group that has taken
inspiration from biology and evaluate their individual merits.

Grammatical evolution

Grammatical evolution (GE) is an evolutionary algorithm where
a program in an arbitrary language is evolved over several generations
based on assessing the fitness of each member of the population and
selectively breeding the best candidates [3]. The genotype of the agent

is mapped using a context free grammar to produce the program
(phenotype).

A favoured alternative evolutionary method for constructing
programs is Genetic Programming (GP) where usually a tree-like
structured expression is directly manipulated during genetic crossover
and mutation [4]. In contrast to this, GE applies the genetic operations
to a binary string genome, which is then subsequently mapped to the
program using a context free grammar. This mapping process has an
advantage over GP of reducing bloat and increasing the possibility that
each member of the population will be valid.

Further improvements have been made to grammatical evolution
in the form of Constituent Grammatical Evolution (CGE) [5]. This
extends the algorithm with the additional bio-inspired concepts of
constituent genes and conditional behaviour switching.

Grammatical swarm

Grammatical Swarm (GS) combines the Particle Swarm algorithm
with the GE-like genotype-to-phenotype mapping to generate
programs in an arbitrary language [6]. The standard equations for
PSO are used with constraints placed on velocity, trajectory and partial
location values.

Grammatical Swarm is particularly interesting as the agents
generating programs within the system can be considered as
“embodied” in the way that they explore the solution space represented
as an N-dimensional environment. O’Neill and Brabazon [6] stated
that in experiments conducted against standard benchmarks such as
the Santa Fe Trial, GS generated comparative or in some cases better
solutions than GE.

Background and Inspiration
When considering the swarm paradigm, the common examples

used are birds and insects. But there are many variations of this
particular class of group behaviour to be found in significantly more

*Corresponding author: William J. Teahan, School of Computer Science, Bangor
University, Bangor, Wales, UK, E-mail: w.j.teahan@bangor.ac.uk

Received December 26, 2012; Accepted January 19, 2013; Published January
22, 2013

Citation: Headleand C, Teahan WJ (2013) Grammatical Herding. J Comput Sci
Syst Biol 6: 043-047. doi:10.4172/jcsb.1000099

Copyright: © 2013 Headleand C, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License,which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Abstract
Automatic programming algorithms have often looked towards biology to provide inspiration for how agents can

learn to solve problems. Evolutionary and swarm based methods in particular have shown great promise in how this
objective can be achieved. We present Grammatical Herding, a new fitness-based automatic programming algorithm
based on a simple set of rules inspired by the herd movements of horses. In this paper, we establish the design of
the new algorithm and test it against a standard benchmark problem, the Santa Fe Trail.

Grammatical Herding
Chris Headleand and William J. Teahan*

School of Computer Science, Bangor University, Bangor, Wales, UK

http://dx.doi.org/10.4172/jcsb.1000099

Citation: Headleand C, Teahan WJ (2013) Grammatical Herding. J Comput Sci Syst Biol 6: 043-047. doi:10.4172/jcsb.1000099

Volume 6(2): 043-047 (2013) - 044
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

complex animals, including humans; for example, crowd behaviour.
This raises the following question: “Could further inspirations from
more complex creatures be applied to algorithms such as Grammatical
Swarm to extend the approach?”

Horses, for example, have some very interesting behavioural traits
that are additional to the standard flocking that makes their herd
movements quite unique.

Herd behaviour of horses

Within the hierarchy of the herd, there are several specific roles,
which have evolved to optimise the group’s movements when grazing
and being chased by predators. The following three areas of their social
behaviour were identified as possible sources for inspiration.

Lead Mare: The lead or “boss” mare directs the group’s movements
based on knowledge of the terrain and the resources available. She
is generally the fittest mature female in the herd with the greatest
experience of the environment.

Herd Stallion: The role of the lead stallion is to patrol the fringes
of the herd. This is partly to protect the mares from predators but also
to drive straggling members back towards the group. By pushing the
weaker members forward, they are less likely to be lost to unfamiliar
territory or attacked by predators [7,8].

Grazing behaviour: Herds of domesticated horses were observed
by the primary author of this paper at various locations around North
Wales and West England to gain observational data regarding how
they searched the land for resources during grazing.

Their behaviour indicated that each horse would remember
particularly lush sections of the grazing space. But occasionally they
would look up and wander towards other horses within the herd; at
a seemingly random point during their movement, they would drop
their head and check the fauna.

Application

In order to make practical use of these observations for an
algorithm, we first considered how they could be simplified into basic
rules. The following rules were established, to be applied to the design
of our new algorithm:

1.	 Agents will traverse the search-space by moving between
their remembered personal best position (pB) and the best
positions found by the fittest members of the population. This
corresponds to the type of flocking behaviour observed by the
horses during grazing.

2.	 A point will be selected between their personal-best location
and the personal best location of a high fitness agent as opposed
to searching the entire space. This corresponds directly to the
search type behaviour observed during the horses grazing
where junior members of the herd would move towards the
lead mares.

3.	 The weakest agents will be driven towards the locations of
the fittest agents. This corresponds to the herding behaviour
enforced by the herd stallions.

The New Algorithm
Nomenclature

Several phrases are used repeatedly within the following sections in
the context of the system design (Table 1).

Design and bio-inspiration

Our new algorithm generates executable programs by traversing
the possible program search space with a swarm of embodied agents.
These agents treat the solution space as an N-dimensional environment
and traverse it based on both their memory of high fitness locations
within that environment and the locations of the fittest members of
the herd.

When the population is first spawned, they are created with a
binary string (the coordinates). This binary string is systematically split
into a subset of decimal values that represent their current location and
these values specify the dimensions within the search environment.
Whenever an agent moves to a new location by traversing towards a
beta (high fitness) agent, the new location is stored and through a GE
type mapping process is converted to executable code.

This process of movement, and evaluation, is continued and at each
iteration, if the fitness has been improved from the agent’s current pB,
the “memory” of the agent is updated to represent this.

Additional to this process, we established the following rules
inspired by PSO, Grammatical Swarm and observations taken from
herds of horses. These six basic rules govern the movements of the
agents within the environment and the subsequent programs that are
generated.

Rules:

1.	 When an agent moves to a new position within the search space,
a program is compiled based on their current coordinates. This
program is subsequently evaluated and provided a score based
on its fitness.

2.	 Each agent maintains a memory of the score and position
where they achieved their personal best fitness.

3.	 A list is maintained containing a subset of the agents that have
achieved the highest personal best fitness and the coordinates
at which it was achieved. This list is referred to as the betas list.

4.	 Each agent will move between the coordinates at which they
found their personal best fitness and the coordinates of the
personal best of a random member of the “betas”.

Fitness A value representing the successfulness of the program
after evaluation.

Herd The population of agents within the search.

Coordinates The binary string used to identify the positions of each
agent within the search.

Betas An arbitrary number of agents within the population with
the highest personal-best fitness. The pB of these agents
is used to steer the search of the other agents within the
system.

Alphas A subset of agents within the betas with the highest
personal-best fitness. These agents are used as targets
for the weakest members to be driven towards.

pB The memory of the personal best position achieved by an
individual agent. This memory includes the fitness score
and the location that fitness was found in.

Table 1: Phrases used repeatedly in the context of the system design.

http://dx.doi.org/10.4172/jcsb.1000099

Citation: Headleand C, Teahan WJ (2013) Grammatical Herding. J Comput Sci Syst Biol 6: 043-047. doi:10.4172/jcsb.1000099

Volume 6(2): 043-047 (2013) - 045
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

5.	 The fittest agents within the betas list are known as the alphas.

6.	 The members of the herd with the weakest personal-best fitness
are driven towards a random member of the alphas. Their
personal-best coordinates are set to the same as the personal-
best fitness of the selected alpha.

The Santa Fe Trail

The Santa Fe Trail is an example of an artificial ant problem used to
benchmark automatic programming algorithms such as GE and GP. It
consists of finding a set of rules that allow an agent to find food along
a predefined trail. The fitness of the ant is measured by the amount of
food the ant is able to find along the trail. To complete the problem, the
ant has a limited amount of actions it can perform to solve the problem:

MOVE 		 : Move forward one step.

TURN-LEFT		 : Turn left 90 degrees.

TURN-RIGHT		 : Turn right 90 degrees.

FOOD-AHEAD	 : Is there any food directly ahead?

The problem is interesting from a programming perspective
as there are several possible solutions each with their own qualities.
Which solution is “best” depends on the subjective conditions used for
evaluation. One option could be an optimum solution that takes the
least total steps by simply following the path with movement operators
and no sensing steps. This method would certainly be the “fastest” for
the ant taking the least total operation. Alternatively a solution that
takes more steps but is more general, allowing the ant to sense its way
around the trail could be rated higher.

An Initial investigation

A model was built in NetLogo to test the application of the rules
against a standard benchmark for automated programming, notably
the Santa Fe Trail. The jGE extension was used to generate the
coordinates of the initial population and map the resulting bit strings
of each generation using a BNF grammar to create the programs [9].

As previously described, the system treats each binary string as
coordinates for the current location within the search space. The binary
string is broken down into sets of dimensional coordinates by splitting
the binary string into several equal length sub-strings. Each of these
smaller strings is treated as one of the coordinate dimensions to position
the agent within the search space environment. These individual
coordinates are treated as codons by the jGE extension during the
grammar mapping in the standard GE genotype to phenotype process.

With this information available, it is relatively simple to plot the
position of the agents within the search space. Each agent within
the “herd” is also provided with the facility to store a memory of the
position they visited that achieved the highest fitness and is set as their
personal-best (pB) location.

After each iteration, the agents select a random member of the betas
list and move towards it, adjusting their coordinates to equal a position
between their own pB location and the pB location of the beta they had
selected. This position was determined by weighting the attractions of
the two points in gravity like fashion. The equilibrium point between
the pull of the pB and the pull of the target agent’s pB was set as the
new position. Once all the agents have selected new coordinates, the

binary string is mapped to code using the GE genotype to phenotype
method. This code is subsequently compiled and the fitness evaluated.
If the fitness of the new location is higher than their previous pB, the pB
is updated for the next iteration.

Additional investigations

Three further experiments were conducted to explore possible
optimisation of the method.

Movements: As mentioned previously, a weighted attraction
method was used to provide the results found in this paper. However,
two other methods were evaluated that showed promise for further
evaluation.

1.	 The position between the agent’s pB and the pB of the
target agent was set to random. This method generally took
significantly longer to find a solution; however, there were
fewer instances of the agents getting stuck at local optima.

2.	 The distance between the two agents was evaluated and the
resulting value was used to position the agent either between
the two pB scores or ahead of the target pB (along the same
trajectory). This took inspiration from the velocity/momentum
approach used in PSO. This was expressed as follows:

L : The new location.

T : The target pB location.

R : The range between the agent’s pB location and the pB location
of the target (T).

L = T + (random R – random R).

Dimensions of the search space: As we manipulate a binary string
as our coordinates, this can be utilised in several different ways. This
experiment chose to treat each codon (to use the GE paradigm) as a
separate dimension. However, a further experiment was taken which
simplified the coordinates by splitting the string into 8 sub-strings (as
opposed to 15). Interestingly, this reduction in dimensions did not
create a significant drop in the performance of the search. Similarly,
increasing the dimensional search by splitting the string into 30
dimensional coordinates had little effect on the algorithm.

Results
The interface of our model allowed us to test various attributes

within the simulation. These specific variables were defined as:

1.	 The amount of agents within the betas group.

2.	 The amount of agents within the alphas group.

3.	 The maximum number of iterations.

4.	 The total size of the herd (population).

The results showed that when the herd contained a sufficient
number of agents and the betas were focused (our most successful
experiments have the betas at a 2:100 ratio), the algorithm was almost
always capable of producing a high fitness generalised solution where
the agents sensed their way along the trail.

The following table (Table 2) displays our results for the experiments
we ran with our model.

H = The amount of agents within the herd.

http://dx.doi.org/10.4172/jcsb.1000099

Citation: Headleand C, Teahan WJ (2013) Grammatical Herding. J Comput Sci Syst Biol 6: 043-047. doi:10.4172/jcsb.1000099

Volume 6(2): 043-047 (2013) - 046
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

B = The amount of agents within the betas.

A = The amount of agents within the alphas.

S = The average movement steps to complete the trail (i.e. MOVE,
TURN-LEFT or TURN-RIGHT).

I = The average number of iterations before no further
improvements were made to the fitness; 400 was set as a maximum
cut-off.

F = The best fitness (percentage of trail solved).

The agents were allowed to take a maximum number of 900 steps;
10 runs were preformed per experiment.

Sample code produced

The following generated code sample was able to complete the trail
in the least number of movement steps (397) the system was able to
find.

ifelse food-ahead

[move]

[turn-right

ifelse food-ahead

[move]

[turn-right

turn-right

ifelse food-ahead

[move]

[turn-right]

move]]

By comparison, the current state of the art algorithm (CGE)
was capable of generating code that completed the trail in 337 steps,
although most solutions mentioned in the literature (for example, for
GP) take around 400 steps or more.

False positives

Whilst the majority of experiments produced programs where
the ant would follow the trail, on occasion the agents would home in
on a “false positive” solution that produced high fitness early in the
iterations but was inefficient compared to the desired trail following

behaviour. Figure 1 shows one program generated by the system that
produced high fitness but used all the available steps.

This problem of getting trapped in local optima solutions within
a search is a known issue within the field of self-programming agents.
Evolutionary algorithms cope with this concern through mutation.
By comparison, the algorithm discussed here tries to overcome this
problem through the swarming effect of the herd. However, neither
method provides a full proof solution to this problem.

Discussion
The purpose of this new algorithm was to see if we could devise

a method where executable code was generated by embodied agents
traversing a solution environment. While methods have been developed
to do this previously, the aim was to see if further improvement could
be achieved by taking inspiration from the observation of biological
systems (i.e. horses) that have not been previously used in bio-inspired
AI.

The rules established for exploration of the solution space require
additional investigation. While the majority of experiments created
a successful program (one that was able to achieve a full fitness of
100%), several failed to reach this goal. However, the new method was
generally able to home in on moderate to high fitness solutions quicker
than GE, often achieving a fitness of over 50% within 10 iterations. A
strength of the algorithm was that the majority of the code generated
provided a general solution to the problem of trail following and would
have preformed equally efficiently on other trail configurations.

To further develop the method, future studies could take additional
inspiration from human nature and consider a problem-solving
pipeline. When we ourselves are presented with a problem, a common
response is to quickly generate a hypothesis by searching the knowledge
we have available. We then implement our possible solution, before
evolving it through a process of practice and evaluation. An algorithmic
equivalent could be to use GH to quickly search a solution space to
seed the population of a GE search. Creating a hybrid algorithm could
have the overall effect of increasing the speed of GE and increasing the
accuracy of GH.
References

1.	 Reynolds C (1987) Flocks, herds and schools: A distributed behavioral

H B A I S F

1000 30 5 250 635 100

1000 20 5 172 397 100

1000 20 2 356 900 69.6

700 30 5 375.5 785 100

700 20 5 221.5 737 100

700 20 2 400 900 97

400 30 5 400 900 38.2

400 20 5 102 900 62.9

400 20 2 43 900 47.1

Table 2: Selected results produced via applying our algorithm to the Santa Fe Trail.

Figure 1: Example of a false positive program generated by the proof of
concept model. Interestingly, when allowed to run to 2000 steps, the search
pattern of the ant exhibits fractal-like properties.

http://dx.doi.org/10.4172/jcsb.1000099
http://dl.acm.org/citation.cfm?id=37406

Citation: Headleand C, Teahan WJ (2013) Grammatical Herding. J Comput Sci Syst Biol 6: 043-047. doi:10.4172/jcsb.1000099

Volume 6(2): 043-047 (2013) - 047
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

model. Proceedings of the 14th annual conference on Computer graphics and
interactive techniques, SIGGRAPH, New York.

2.	 Kennedy J, Eberhar R (1995) Particle swarm optimization. Neural Networks.
IEEE International Conference on Neural Network, Perth.

3.	 Ryan C, Collins JJ, O’Neill Michael (1998) Grammatical evolution: Evolving
programs for an arbitrary language. Proceedings of the First European
Workshop on Genetic Programming 1391: 83-95.

4.	 Koza JR (1992) Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Massachusetts.

5.	 Georgiou L, Teahan WJ (2011) Constituent Grammatical Evolution.

Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence.

6.	 O’Neill M, Brabazon A (2006) Grammatical Swarm: The generation of programs
by social programming. Natural Computing 5: 443-462.

7.	 Mistral K (2005) The Secret Life of Stallions.

8.	 Utah State University (2009) Wild Horse Behaviour. Animal, Dairy and
Veterinary Sciences.

9.	 Georgiou L, Teahan WJ (2006) jGE - A Java implementation of Grammatical
Evolution. ICS’06 Proceedings of the 10th WSEAS international conference on
Systems, Athens.

Citation: Headleand C, Teahan WJ (2013) Grammatical Herding. J Comput Sci
Syst Biol 6: 043-047. doi:10.4172/jcsb.1000099

Submit your next manuscript and get advantages of OMICS
Group submissions
Unique features:

•	 User friendly/feasible website-translation of your paper to 50 world’s leading languages
•	 Audio Version of published paper
•	 Digital articles to share and explore

Special features:

•	 250 Open Access Journals
•	 20,000 editorial team
•	 21 days rapid review process
•	 Quality and quick editorial, review and publication processing
•	 Indexing at PubMed (partial), Scopus, DOAJ, EBSCO, Index Copernicus and Google Scholar etc
•	 Sharing Option: Social Networking Enabled
•	 Authors, Reviewers and Editors rewarded with online Scientific Credits
•	 Better discount for your subsequent articles

Submit your manuscript at: http://www.editorialmanager.com/systemsbiology

http://dx.doi.org/10.4172/jcsb.1000099
http://dl.acm.org/citation.cfm?id=37406
http://dl.acm.org/citation.cfm?id=37406
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=488968&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D488968
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=488968&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D488968
http://www.citeulike.org/user/hughleather/article/2304787
http://www.citeulike.org/user/hughleather/article/2304787
http://www.citeulike.org/user/hughleather/article/2304787
http://books.google.co.in/books?id=Bhtxo60BV0EC
http://books.google.co.in/books?id=Bhtxo60BV0EC
http://ijcai.org/papers11/Papers/IJCAI11-214.pdf
http://ijcai.org/papers11/Papers/IJCAI11-214.pdf
http://ijcai.org/papers11/Papers/IJCAI11-214.pdf
http://www.odysci.com/article/1010112991562569/grammatical-swarm-the-generation-of-programs-by-social-programming
http://www.odysci.com/article/1010112991562569/grammatical-swarm-the-generation-of-programs-by-social-programming
http://www.horseconnection.com/site/archive/story-feb06.html
http://www.advs.usu.edu/files/uploads/ADVS3910WildHorses.pdf
http://www.advs.usu.edu/files/uploads/ADVS3910WildHorses.pdf
http://dl.acm.org/citation.cfm?id=1984287
http://dl.acm.org/citation.cfm?id=1984287
http://dl.acm.org/citation.cfm?id=1984287
http://dx.doi.org/10.4172/jcsb.1000099

	Title
	Corresponding author
	Abstract
	Introduction
	Automatic Programming
	Grammatical evolution
	Grammatical swarm

	Background and Inspiration
	Herd Behaviour of horses
	Application

	The New Algorithm
	Nomenclature
	Design and bio-inspiration
	The Santa Fe Trail
	An Initial investigation
	Additional investigations

	Results
	Sample code produced
	False positives

	Discussion
	References
	Table 1
	Table 2
	Figure 1

